

• Annexure:- 1

• Final Product specifications (It's for lab model)

Even t no.	Particular	Fig no.	Qty	Material specification
1	Upper cover	1	1	MS Steel
2	Lower cover	2	1	MS Steel
3	Centre chassis support	3	1	MS die mould
4	Servo motor	4	1	VTS 08A
5	Supporting conical flask	5	1	MS Steel
6	Support roller 1	6	1	316 MS
7	Support roller 2	7	1	316 MS
8	Spring Support Assembly	8	1	Brass (mould)
9	Springs	9	4	F42 Iron
10	Motor Gear Seal	10	1	Plastic Moulding
11	Lock nut	11	3	MS
12	Main Roller	12	1	316 MS
13	Motor Chassis (1)	13	1	Al
14	Motor Chassis (2)		1	Al
15	Spring Rods		4	Steel
16	Bearings		2	SKF
17	Servo motor circuit design		1	Parallel circuit mgf.
18	Motor Gear		1	Brass
19	Gear (1)		1	Brass
20	Gear (2)		1	Brass
21	Gear (3)		1	Brass
22	Side Gear (1)		1	Brass
23	Side Gear (2)		1	Brass
24	Side Gear (3)		1	Brass
25	Side gear plate		1	MS

22	Cone ring inner	1	Al
23	Cone ring Outward	1	Al
24	Chassis holder stud	1	Al
25	Roller (1) Stud	1	MS
26	Main Roller Stud	1	MS
27	Electrical Control Systems	1	Electrical parts
28	Right Pulley	1	Al
29	Left Pulley	1	Al
30	Boom Support	1	Acrylic, laser cutting

• Annnexure:- 2

• Follow Up, Trial and Error, Research and Development and tendor charges

1	Upper cover die (male/female)	 1	Hard steel, shrinkage eliminator, trials, finishing, Powder coating, analysis, Chamfering.
2	Lower cover die (male/female)	 1	Annealing process, shrinkage eliminator, trials, finishing, Powder coating, analysis, chamfering,
3	Centre Chassis die (male/female)	 1	Electro plating, shrinkage eliminator, trials, finishing, Powder coating, analysis, Buffing.
4	Right Pulley Die	 1	Hard steel, shrinkage eliminator, trials, finishing, Powder coating, analysis.
5	Left Pulley Die	 1	Hard steel, shrinkage eliminator, trials, finishing, Powder coating, analysis.
6	Motor Gear	 1	Jig & fixture, Extra material, SPM tool, Trials, grinding, surface finishing

7	Gear (1)		1	Jig & fixture, Extra material, SPM tool, Trials, grinding, surface finishing
8	Gear (2)		1	Jig & fixture, Extra material, SPM tool, Trials, grinding, surface finishing
9	Gear (3)		1	Jig & fixture, Extra material, SPM tool, Trials, grinding, surface finishing
10	Side gear (1)	~	1	Jig & fixture, Extra material, SPM tool, Trials, grinding, surface finishing
11	Side Gear (2)		1	Jig & fixture, Extra material, SPM tool, Trials, grinding, surface finishing
12	Side Gear (3)		1	Jig & fixture, Extra material, SPM tool, Trials, grinding, surface finishing
13	Main Roller		1	EDM process, milling, Internal finishing, grinding, slot cutting, extra material.
14	Boom		1	Trial and error, Spring steel material, Constant temp heater process, excess material. Material analysis.
15	Constant temperature ceramic heater coil		1	Designed and built up.

16	Accessories		Nuts and Bolts, gears, Alenkeys, springs,
17	Machining charges		All Parts

- Annexture:- 3
- Designing And Consultation Charges
 - 1) Designing
 - 2) Consultations with prototype modelling (Over Heads):-

Analysis of Motor front support

Objective: - The main objective of this analysis is to test the motor front support against maximum loading condition that occurs in case of stalling of gear train & the torque transmitted by motor (converted in to normal force) will act directly on front support & motor rear support.

Meshing: - Total no. of elements created = 39241

Boundary conditions:-

1) Constrains: - The motor front support is attached to base plate at bottom & to roller support at top with the help of nut & bolt.

Therefore all the nodes on internal surfaces of holes (quantity = 3) provided for bolting purpose are constrained in all direction (x, y & z).

2) Loads: - The total tangential load transmitted from first gear to second gear will be directly acted on motor support in case of gear train stalling.

This total force 2182 N. will be assumed to be get divided equally on motor front & back support.

Therefore the total force loading the motor front support = 1091 N. acted on two holes.

Therefore normal force is applied on all the nodes on internal surfaces of holes (quantity = 2) provided for bolting the motor to support considering 180 degree contact angle between hole & bolt surface.

RESULTS

VON-MISSES STRESSES

The von-misses stresses at higher range at sharp edges which can be eliminated by removing sharp edges otherwise at other portions stresses are within limit and strengthening of structure should

have to do according to FOS requirement.

STRESSES IN Y DIRECTION

MAGNIFIED VIEW AT STRESSED LOCATION

Displacement Vector Sum

The stress concentration occurred at the bolt locations is due to the sharp edges at ends in actual model the care should have to take about highly stressed locations and some changes in design which will improve the strength.

Analysis of Motor Rear Support

The motor rear support is fixed at bolting locations and force resulted due to torque is applied at the motor mounting locations as shown in above pictures.

Von-Misses stresses

Stresses in Y direction

Displacement Vector Sum

ROLLER

The rollers are analyzed for the torsion & bending condition.

The torsional condition considered here is the twisting of roller due to gear mounted at one of the end of roller.

The bending condition considered here is the bending of roller due to spring force at the top of roller.

Roller 1 Torsion

Results

Elemental Von-Misses Stresses

Displacement Vector Sum

Roller 2 Torsion

Boundary Condition

Loading Condition

Results

Von-Misses stresses (Note – The pictures are magnified views)

Elemental Von-Misses Stresses

Bending of Roller against spring force of 8N

Finite element model with Loading & Boundary Condition

Elemental Von-Misses stresses

Displacement Vector Sum

SATELLITE BOOM DEPLOYMENT MECHANISM

GEAR NUMBERING SYSTEM

GEAR ANALYSIS

The analysis of gears is done on the basis of bending of gear tooth at the maximum tangential tooth load. So it is assumed that the in case of stalling of gear the maximum tangential tooth load comes at the tip of the tooth. The stress concentration occurred due to the sharp edges and in actual model the sharp edges are removed already and the model considered here for analysis is not covering the details of models as in actual.

The running torque of 12 Nm is considered for calculation.

Analysis of Gears

Gear No. 2 (Above motor Gear)

Von-misses stresses

Gear No. 5 (Smaller gear next to roller gear)

Von-Misses gear

Gear no 6 (Larger gear driven by smaller gear)

Loading & Boundary Condition

Von-Misses Stresses

Displacement Vector Sum

